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The vortical flow above the drain-hole 
in a rotating vessel 

By T. S. LUNDGREN 
Department of Aerospace Engineering and Mechanics, University of Minnesota, 

Minneapolis, Minnesota 55455 

The problem of slow draining of incompressible fluid from a rotating cylindrical vessel 
is considered. Transient effects, internal viscosity, boundary friction and finite 
cylindrical boundaries are included. In addition a tornado model formulated by 
Turner is solved and compared with some experiments on rotating turbulence of 
Hopfinger, Browand & Gagne. 

1. Introduction 
While there is considerable literature on tornado-like flows, for instance the recent 

conference proceedings edited by Bengtsson & Lighthill (1982) and the review article 
by Maxworthy (1982) contained in that volume, the literature which is specifically 
related to the slow withdrawal of an incompressible fluid from a rotating container 
is more limited (Einstein & Li 1951; Rott 1958; Lewellen 1962; Andrade 1963). A 
number of aspects of this problem have not been fully treated and the transient 
problem appears not to have been considered at all. Some features of the steady 
problem can be better understood by approaching it through a transient analysis. 

This work is partly motivated by a recent paper by Hopfinger, Browand & Gagne 
(1982) in which an oscillating grid in the bottom of a rotating liquid-filled cylinder 
produces a layer of turbulence near the bottom of the cylinder from which a large 
number (about 20) of intense vortices extend vertically to the top of the cylinder. 
These vortices can have a local vorticity as large as fifty times the background 
vorticity of the tank and disappear after a lifetime of about 20 rotation periods by 
catastrophic events, to be replaced by apparently new vortices. A plausible source 
for these vortices might be the existence of fairly persistent suction sites within the 
turbulent layer caused by low subharmonics of the basic driving oscillatory motion. 
If such sites exist they might be expected to produce vortices similar to those 
produced by a rotating drain, by concentrating the vorticity of the rotating fluid as 
it is drawn into the site. 

In the basic problem to be considered in this paper, liquid is contained between 
two infinite flat plates separated by distance H. Initially the plates and the liquid 
are rotating with angular velocity a, when a hole of radius R is opened on the axis 
of rotation of the bottom plate from which fluid is slowly withdrawn with average 
velocity u(t/t,). This function slowly increases to a final steady value u, in a time 
of order t,. The velocity profile at the hole is usually taken to be uniform, for 
simplicity, but could be arbitrarily specified in principle. In  a real gravitational drain 
it would be determined by the details of the external plumbing. 

A number of variations of the basic problem are also considered. The effects of a 
sidewall, internal viscosity and boundary friction are included. In  an important 
modification, which will be called Turner’s problem (Turner 1966), the prescribed 
velocity profile has a central downflow with a surrounding annular upflow such that 
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there is no net flow from the tank. It is thought that the resulting tornado-like flow 
is close to what is seen in the HGpfinger, Browand and Gagne (hereinafter referred 
to as HBG) experiment. 

The equations describing such flows are : 

Axial symmetry has been assumed and the neglected viscous terms will be included 
when needed. These equations may be made dimensionless by introducing new 
variables ; 

where s is a Rossby number which will be assumed small. The equations are thus: 

The boundary and initial conditions for the inviscid problem are : 

U z = O  a t 5 =  1; 

Uz = F(T/T,) W B ( ~ )  at 5 = 0;  

(1.10) 

(1.11) 

where F(T/T,) = u(T/T,)/u,, T, = at, and 

U z = O ,  U , = O ,  U , = q  a t T = 0 .  (1.12) 

The function WB(v) is the velocity profile at  the hole, taken to be zero when 7 > 1 ; 
for uniform flow W B ( ~ )  = - 1 when < 1. The function F(T/T,) is the starting time 
dependence ; F( T /  T,) + 1 as T/T, -+ co . 

The plan of the paper is as follows. In $2 the linearized version of the above problem 
is treated in order to set the stage and initiate the nonlinear problem. Two things 
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are found ; inertial oscillations associated with starting the drain may be suppressed 
by making T, large (i.e. a gradual start); and, more importantly, the linearized 
problem is not uniformly valid at large time (Uh continues to increase with time). 
In  $3 the nonlinear version of this problem is solved and a similar result is found; 
the tangential velocity continues to increase. This does not violate the equations but 
suggests that viscosity is important. In $4 internal viscosity is included and, while 
this modifies the swirling-velocity profile, the velocity continues to accelerate. In  $5 
boundary friction is included by using an approximate nonlinear version of the 
Ekman compatibility boundary condition introduced by Turner (1966). When there 
is friction on the bottom (the suction side) with a free upper surface, the swirling 
velocity still increases with time (this would of course finally cause a deep whirlpool 
depression in the free surface and violate the approximation of a flat surface). Only 
when friction on the top surface is included does this problem have an ultimate steady 
solution. 

The results of $4 would appear to disagree with those of Einstein & Li (1951). They 
found a steady solution with internal friction but without top or bottom friction. 
Their problem differs from those described above in one boundary condition; the 
tangential velocity is maintained at a fixed value at a finite distance from the axis. 
In  their experiments this is accomplished by inlets and baffles. This problem can be 
solved by the same methods as the others; the resulting solution tends to a steady 
state at large time when internal viscosity is included. The Einstein-Li boundary 
condition is discussed in $$3,4 and 5.  The shape of the free surface is also determined 
for the Einstein-Li problem in $4. In  all other free-surface problems it is assumed 
that gravity is effectively large enough to make the surface flat. 

In $6 Turner’s problem is solved and the application to the HBG experiment is 
discussed. 

2. The linearized problem 

the form of a small perturbation from solid body rotation ; 
In the linearized version of the problem set by (1.6)-(1.12) a solution is sought in 

u, = u,,+€u,,+ ..., 
ur = Uro+€Url+ ... , 
Ue = q+EUe1+ ... , 
P = P0+€Pl+ ... . 

(2.2) 

(2.3) 

(2.4) 

The lowest-order equations are thus 

auei -+2ur0 = 0, aT 



384 T.  S.  Lundgren 

To these must be added the first-order equations 

Eliminating Pl from these last two equations gives 

(2.9) 

(2.10) 

(2.11) 

Upon operating on (2.11) with Clay( )/raT&,~ and using (2.5) and (2.6) to 
eliminate U,., and Ue, one obtains a single equation for Uzo, namely 

(2.12) 

This is to be solved with the boundary conditions and initial conditions 

U,, = O  at C =  1,  (2.13) 

U,, = WB(7) F(T/T,) at  [ = 0, all T, (2.14) 

U,, = 0 at T = 0. (2.15) 

The other velocity components are then determined from (2.5) and (2.6), whence 

(2.16) 

(2.17) 

The problem posed above may be solved by straightforward application of linear 
analysis which is outlined in Appendix A. The solution is 

where On is given by (A 11) in the appendix. 
The first term in (2.18) is the same as the instantaneous suction profile scaled by 

(1-[) while the second consists of inertial oscillations (a superposition of spatial 
modes times trigonometric functions of time). In the absence of viscosity these 
low-frequency oscillations do not decay out in time and in general are not small. For 
instance, if the suction is suddenly imposed and then held steady the inertial 
oscillations are of the same order as the suction velocity. However, if the suction is 
slowly imposed these oscillations may be made arbitrarily small because the time 
derivative in (A 11)  may be written 

(2.19) 

and is small if T, is large enough. The primes indicate derivatives with respect to the 
argument TIT,. 
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The other velocity components are determined from (2.16) and (2.17) and the 
results are thus 

U,, = WB(y) (1 -[) F(T/T,)+inertial oscil., 
i rm 

u,., = - J .' WB(y) y dy F(T/T,) +inertial oscil., 
7 0  

(2.20) 

(2.21) 

1 1  7 
ue1= -2 lo WB(y) 7 dy loT F(T/T,) dT+inertial oscil. (2.22) 

Two things should be noticed. Except for the inertial oscillations Uzo and U,., are both 
quasi-steady, being scaled with the instantaneous mean suction velocity and while 
U,, has the same radial dependence as U,., it  continually grows with time. This means 
that eventually the perturbation swirling velocity becomes comparable to the initial 
solid-body rotation and the expansion becomes invalid. 

3. The nonlinear inviscid problem 
Motivated by the form of the linear solution the radial and vertical velocity 

components will be rescaled by the instantaneous average velocity at the hole by 
defining 

A slow time will be defined by 
PT 

7 = E J F(T/T,) dT; (3.3) 
0 

which tends to 7 = ET if T is large. This is the total volume flow through the drain 
up to time t ,  divided by xRBH, the volume above the hole. It will be assumed that 
the inertial oscillations, which have a different timescale, occur only in higher-order 
terms of a perturbation expansion. The lowest-order terms must therefore satisfy 

with boundary and initial conditions 

W = O  a t c = l ,  (3.8) 

W = W,(y) at y = 0, (3.9) 

U , = y  a t r=O.  (3.10) 
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The problem described in the above equations may be considerably simplified. 
From (3.7) it is clear the aP/aq is independent of 5, therefore (3.6) implies that Ue 
is also independent of 5 and (3.5) may thus be written 

-+v- 7 U e = O .  
K 7  

(3.11) 

In order for this to be consistent V must also be independent of 5. Since V is 
independent of 5, (3.4) implies that W can be no more than linear in 6. In  light of 
the boundary condition W is therefore given by 

W = WB(7) (1 -51, (3.12) 

and therefore (3.13) 

The problem thus reduoes to solving (3.11), with V given by (3.13), subject to the 
initial condition Ue = 7. 

Since W, is defined to be zero for 7 > 1 and has unit average over the hole, (3.13) 
gives 

(3.14) 

for 7 > 1 and depends on the details of the profile for 7 < 1. For uniform flow 

V=-h, 7 < 1 ,  (3.15) 
(wB=-1) 

while, for a parabolic profile [WB = -2(1-72)], 

v =  -7(l-k”, 7 < 1.  (3.16) 

Equation (3.12) may be solved by the method of characteristics, which is 
equivalent here to integrating along particle paths. The equation may be written as 
a pair of ordinary differential equations, 

with initial conditions 
v=< ,  U e = <  a t 7 = 0 ,  

(3.17) 

(3.18) 

(3.19) 

where 6, the initial position of a particle, allows a parametric representation of the 
solution. The parametric solution is 

= t2, (3.20) 

(3.21) 

The integrations in (3.21) are to be carried out, solved for < as a function of 7 and 
7 which is then to be substituted into (3.20). 
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These operations are easily carried out for uniform suction flow with V given by 
(3.14) and (3.15). The results are 

(3.22) I 7 U, = q2 eT, 7 < e-4.; 

= i + ~ + h ( 7 2 ) ,  

=7+72,  7 >  1. 

e* < 7 < 1 ;  

The part for r] > 1 is universal for any suction profile and consists of a solid-body 
rotation plus a potential vortex whose strength increases linearly with time. The rest 
of the profile depends on the particular suction profile. 

The vorticity distribution is also interesting. This may be calculated from 

(3.23) 

(3.24) 

= 2, .7 > 1. I 
This shows that the amplification of the peak vorticity over the background vorticity 
goes like e7. Notice that the vorticity of the innermost region changes with time and 
therefore the solution never reaches a steady state. This happens because as time 
increases the fluid above the hole has come from ever greater distances and possesses 
the circulation appropriate for that location. 

Similar results are found for the parabolic suction profile, with V given by (3.14) 
and (3.16). The results are 

< T # l 2 <  1; 
2-72 2 

= 1+7-+1n- 
q2 ’ l+exp(27) 

(3.25) 1 
and 

=7+72, ?#I> 1; ) 

w.= 8 exp (27) 2 
51 [2+[exp(27)-1]~,1~]~’ ” -= l+exp(27)’\ 

i < 72 < 1; 
2 2 

q2(2-q2)’ 1 +exp(27) 
- - I (3.26) 

= 2, 7 > 1. I 
In this case there is a much more intense concentration of vorticity near the axis. 

A variation on the problem considered above is the transient version of the Einstein 
& Li problem discussed in the introduction. The fluid is initially rotating as a rigid 
body when the drain is opened as before but fluid which enters through a cylindrical 
boundary at 7 = l;ll = R,/R has steady angular velocity of the same value as the 
initial rotation. Mathematically the problem is to solve 

(3.27) 
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with Ue=q a t 7 = 0 ,  v < v 1 ,  (3.28) 

Ue= ql at 9 = ql, all 7.  (3.29) 

The solution is easily found. All the fluid which is initially within the container spins 
up in exactly the same manner as for the infinite case, while all the fluid which enters 
through the side boundary has 

9uo = 9:.  (3.30) 

The particle path which separates the two solutions satisfies 

- d7 = ~ ( 7 1 ,  9 = ql a t  7 = 0. 
d7 

(3.31) 

(3.32) 

(3.33) 

(3.34) 

In general, for any suction profile, the infinite-domain solution is valid as long as VUe 
remains smaller than 7: : wherever 7 Uo begins to poke above 9; it  must be replaced 
by 7;. Similarly the vorticity must be replaced by zero wherever TUe is replaced 
by 91. 

4. The effect of interior viscosity 
In  the problem considered in the previous sections the swirling velocity continues 

to increase as vorticity becomes more intense along the axis. At first sight one might 
expect internal viscosity to ultimately counter this effect: however this is not the case. 
The appropriate equation is (1.7) with the viscous terms retained. This may be written 

where the parameter 
vH N = -  

u, R2 

will be assumed to be small and V is the same function used previously. A solution 
is sought for large time which matches the inviscid solution for small time. It is 
convenient to convert this equation into a vorticity equation by using 
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and operating on (4.1) with r]- la/aq.  This gives 

389 

The fist term on the right is the vorticity-production term (i.e. a*Vu). 
Further discussion will be limited to the uniform-suction case where W, = - 1 when 

7 < 1 and W, = 0 when r] > 1 and the inviscid solution is given by (3.24). When the 
inviscid solution is substituted into the neglected viscous terms it becomes clear that 
these terms are important when r] x N! and the inviscid solution remains valid for 
values much larger than this. Since exp ( -3) is a measure of the width of the vortex 
core the viscous terms become important when Ni x exp (-$), that is, at modestly 
large times of order In (N-l). 

Motivated by the above discussion let a new radial variable be defined by 

s = q /Ni ,  (4-5) 

and restrict attention to the part of the flow where r] < 1 (since 7 = 1 occurs at 
s = N d ,  which tends to infinity as N+O). The equation becomes 

The solution should match the inviscid solution for large 8 .  Comparing with (3.25) 
this condition is seen to be 

(4.7) 

The asymptotic solution to this problem for large time is developed in Appendix B. 
It is found there that 

with C2 = 4 In (N) + 0.9045. 

When 7 is large the first term dominates. This is like Burgers’ vortex, but with a 
circulation which increases with time. Thus, while interior viscosity modifies the 
velocity profile, the solution continues to swirl faster as time increases but not as 
fast as in the inviscid case. The maximum vorticity grows linearly with time 
compared with the exponential growth found for the inviscid flow. 

It remains to discuss the Einstein & Li version of this problem. In  this case the 
circulation about a distant contour remains constant and ultimately the viscous 
problem will have a steady solution. The inviscid vorticity distribution from the last 
section, for uniform suction, is 

I 

This is for 7 > 7;- 1. For a long time the effect of viscosity is the same as the 
infinite-domain case just analysed, with the viscous solution matching into the 
2/v2 part of the inviscid vorticity. The width of this viscous region is of order N! 
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and stays constant while a second viscous layer which spreads the discontinuity at 
q = exp [i(qt- 1 - T ) ]  moves radially inward. These two layers merge when 
T -  (7;- 1) = O(lnN-l), which could be a large time if q1 is fairly large (for example, 
10). The merged layers finally evolve into a steady vorticity distribution because the 
total vorticity must stay the same as in the inviscid solution. That is, A from (9.4) 
stays constant because the vorticity outside the second layer drops rapidly to zero. 
The steady solution must satisfy (4.6) with the integral condition 

and is easily found to be 

(4.10) 

(4.11) 

= $(I - e ~ ’ / * ~ ) .  (4.12) 

This is exactly the same as Burgers’ (1948) vortex solution. (The Einstein-Li solution 
is more general than this because they do not restrict it  to small N; consequently 
there is another form of the solution in the region r] > 1. The differences tend to zero 
when N+O.) Burgers’ vortex is the steady solution of a viscous vortex with finite 
circulation in an axially straining velocity field. This is exactly the physical situation 
in the region above the drain hole because of the linear variation of the axial velocity. 

It is interesting to consider the effect of free-surface variation on this last problem. 
The flow will be assumed steady with the Einstein-Li boundary condition, at q = q1 
and uniform suction at the drain hole. The elevation of the free surface will be given 
by 5 = h(q) with the depth specified to be unity at the position q = vl, i.e. h(ql)  = 1.  
This means that the vertical lengthscale H is the depth at this location. The same 
reasoning as before shows that Uo and V are independent of Y and that W varies 
linearly with [; however W is not zero at the upper surface but is related to V by 

(4.13) 

since the free surface is a streamline. The continuity equation may be written 

W(5 = h)- W(g = 0) 
= 0, 

i a  
- -r]V+ 
71 all h 

and using (4.13) to eliminate W(5 = h) gives 

i a  
- -hr]V = W(Y= 0 ) .  
9 ar] 

For uniform suction this may be integrated to give 

which has a clear physical meaning. 
At the free surface the pressure is constant, therefore (3.7) gives 

P = G(h-Y),  
and (3.6) relates h and Us; 

dh G - = - .  
d7 T 

(4.14) 

(4.15) 

(4.16) 

(4.17) 

(4.18) 
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FIQURE I.  Circulation distribution and height of free surface in a rotating cylinder with 

uniform outflow at the drain. K and N are defined in $4. 

The problem is thus to solve (4.18) and (4.1) with V given by (4.16). When N is 

sue = 6 (4.19) 

zero these equations may be solved for U, and h;  

(4.20) 

This is the classical solution of the free surface induced by B potential vortex and 
represents the case where the air core plunges through the drain hole. Of course this 
violates the condition of uniform suction velocity but is a valid solution for a more 
general problem since it doesn't depend on assumptions about the suction velocity. 
However, when N is not zero, (4.1) depends explicitly on V and therefore on the 
prescribed suction velocity and the solution must therefore be restricted to positive 
h (or else the boundary conditions must be changed). 

When N is small the viscous terms become important when 7 is of order N:. 
Therefore (4.10) suggests that the parameters should be restricted to a range where 

K = -  7: 
GN' 

is of order one. A change of variables to 

(4.21) 

g=- que 
s: ' 

s = q / N i ,  

(4.22) 

(4.23) 
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gives the pair of equations 
1 s dg d2g 1 dg 
2 h d8-dsB-S ds' - _ _ _ -  (4.24) 

(4.25) 

which must be solved with the asymptotic boundary conditions g+ 1 ,  h+ 1 as s+ 00 

and g = 0 at s = 0. These equations have been solved numerically with the results 
shown in figure 1. When K is small the velocity distribution tends to Burgers' solution 
and doesn't deviate much from this for any allowable value of K. When K tends to 
the value 2.69 the depth at the centre tends rapidly to zero and there is no allowable 
solution for larger K. This would seem to mean that when the drain plumbing is 
specified in some realistic way there is a critical value of K probably near 2.69 at which 
the air core passes through the hole. Rott (1958) discusses the rapid breakthrough of 
the air core with increasing circulation, identifying a parameter similar to K. 

5. The effect of viscosity at the boundaries 
It is assumed that the effect is confined to thin boundary layers and vertical shear 

layers. For linearized problems the theory of the Ekman boundary layers is well 
developed. In the inviscid interior a balance between Coriolis forces and pressures 
forces provides circumferential velocity in response to a radial pressure gradient. 
However, near a boundary the Coriolis force is decreased by viscosity and the same 
pressure forces induce strong radial flow in a boundary layer with thickness of order 
(v/a)t. Conservation of mass in this layer produces a vertical velocity at the outer 
edge of the Ekrnan layer in a form suitable for use as a boundary condition for the 
interior flow. An approximate boundary condition for nonlinear Ekman layers has 
been used by Turner (1966) for tornado-like flows similar to those of this paper. This 
makes use of a numerical analysis of the flow between rotating disks by Rogers & 
Lance (1960). A similar use was made by Wedemeyer (1964) in a nonlinear spin-up 
problem. The result is that the radial flux per unit length in the Ekman layer is 
approximated by 

M=-0.67(u8-rQ)r - , L:J 
where rA2 is the velocity of the boundary and Ug the velocity in the interior (2mM 
is the total radial flux in the layer). Conservation of mass gives the velocity at the 
edge of the layer, 

with the plus sign at an upper boundary, the minus a t  a lower boundary. When put 
in dimensionless form this becomes 

where (5.3) 
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This parameter may also be written 
h4 9 = 0.67 -, 
€ 

(5.4) 

where E = v / Q P  is an Ekman number. The parameter 9 is not necessarily small. 

5.1. The efSect of viscosity at the lower boundary 

The problem of slow efflux will be considered again with friction allowed on the 
lower boundary, the upper boundary being frictionless and flat; an idealized free 
surface. The problem is the same as in $3 except that the velocity at the lower surface 
is given by (5.2) when 'I > 1. For uniform suction the boundary condition is given 
by 

W ( C = O )  = - 1 ,  'I < 1 ;  (5.6) 

Since W is a linear function of 3, as before, one finds 

i a  
---'I= W(C=O),  
'I a'I 

from which V = - - + j ,  ' I < l ;  (5.9) 

(5.10) 

The first term on the right is the negative of the radial flux per unit length carried 
in the Ekman layer. At the initial time this term is zero. Since becomes larger 
than r2 as time proceeds, more of the radial inflow is carried by the Ekman layer 
and less by the interior velocity. Except for a special case a discontinuity in V will 
develop at 7 = 1 with a greater inflow required for 7 < 1 than can be supplied by 
the interior flow from 7 > 1. The required flow is supplied from a vertical shear layer 
a t  7 = 1 which carries a thin stream of fluid upward from the Ekman layer. The linear 
theory of vertical shear layers is well developed (see Greenspan 1968) and it is known 
that such layers have a complex double-layer structure. A layer with thickness of 
order Z& smooths out corners in the Uo profile while a thinner embedded layer with 
thickness of order Id carries a vertical flux of order Z& (it is of order q5 (= I&/€) in 
the present dimensionless scheme). The structural details of these layers are not 
needed in this paper but are assumed to be similar to those described above. Simple 
experiments by Lewellen (1962) verify the existence of thin vertical shear layers near 
the drain hole with flow in a direction opposite to that through the hole. 

The mathematical problem of solving 

(5.11) 

with V given by (5.9) and (5.10) and with 7Ue = q2 at r = 0, is equivalent to solving 

I 
(5.12) 
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as before, except that the expression for V also depends on 6. The parametric solution 
is formallv the same; 

(5.13) 

7Ue = 6'. J 
Depending on whether 1 and 6 are less than, or greater than, one this breaks down 
into three expressions; 

(i) 7Ue = 6' = $e7, 7 < e d ;  (5.14) 

(iii) 
(5.16) 

7Ue = 6'. 
In (ii) and (iii) the integrations cannot be carried out easily in closed form. The 
solution will be analysed by small- and large-time expansions supplemented by 
numerical integration. 

Region (iii), 7 > 1, will be considered first. When 7+0, 6 + ~ ;  therefore a change 
of variables 6 = 7 + A ,  a = 7 + A h  will be made, with h a new integration variable and 
A small. A straightforward expansion in powers of A gives 

7 = 274 + (1 -447') A'+.  . . . (5.17) 

Solving this for A one finds 

(5.18) 

and hence = (' = (T+A)' = 72+7+$hT2+O(73). (5.19) 

Comparing this with (3.23) it is seen that bottom friction causes the angular velocity 
to become intensified. The radial velocity is calculated from (5.10) giving 

(5.20) 

The lowest-order correction, decreases the radial inflow in the interior which 
must be compensated by a radial inflow carried by the Ekman layer, which thus 
consists of a finite total Ekman flux from infinity. This will be shown later to make 
sense in terms of an Einstein-Li boundary condition at large radius. The vertical 
velocity at the edge of the Ekman layer is calculated from (5.8) and is found to be 

(5.21) 

since the first two terms in (5.20) don't contribute. This is seen to be positive, 
increasing for smaller radius. The picture is thus presented as a radial inflow from 
infinity, part of which is carried in an Ekman layer from which a portion flows 
upwards into the interior. 
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s 

FIGURE 2. Sketch of the cubic polynomial which occurs in the denominator of (5.22). 

A similar conclusion is reached by expanding for large time. Consider (5.16) again. 
With a change of variable to a = 55 this may be written 

(5.22) 

The cubic in the denominator is sketched in figure 2. It has a minimum at 5 = 3-: 
with heightp = (24E2)-' - (2) 3-t. As 7+.m the integral must become singular. When 

< 3 3  this can only occur if the minimum tends to the axis, i.e. p+O. When 
7/E > 3 3  it occurs with the minimum at a negative value and with the lower limit 
of integration, q/E, tending to the right-hand zero crossing. That is 

or 

(5.23) 

(5.24) 

Therefore it is clear that as 7 3  00 a steady-state solution is reached for 7 > 1. Solving 
for E in the above expressions gives this solution as 

(5.25) 

(5.26) 

If 4 > 34/4 only (5.26) occurs. The inner part of this solution is a potential vortex 
while the outer part makes a transition to solid-body rotation at infinity. This result 
is plotted in figure 5 for a particular value of 4. The radial velocity, from (5.20), is 

33 
V = O ,  7 > 7 .  

2+ 

(5.27) 

(5.28) 

The last form occurs because (5.20) and (5.24) are the same. The radial velocity is 
zero throughout the region 7 > 1 if 4 > $14. When V is zero the total radial flow 
is carried in the Ekman layer. 
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Finally, the vertical velocity is 

3: = o ,  q > -  
24t * 

(5.29) 

(5.30) 

For 11 < 3!/2#4 there is some upward flow from the Ekman layer into the interior. 
However if 4 > 34/4 the inner region does not occur and W ( [  = 0) is zero throughout. 
The total flow from the Ekman layer must then flow upward in the vertical shear 
layer a t  71 = 1. 

is 
constant. This is exactly the solution which has been found. Without going through 
the transient analysis it would not be clear that the part of the solution which has 
constant q Ue extends from the minimum of the 71 Ue function calculated from V = 0. 

The problem of flow from infinity in the Ekman layer can be better understood by 
considering the Einstein-Li boundary condition at a finite radius ; 

Notice that for a. steady state to exist, (5.11) says that either V =  0 or 

(5.31) 

at 71 = ql > 1. The fluid is forced to enter uniformly through the cylindrical sidewall. 
The part of the fluid which was in the container a t  7 = 0 evolves as before. However, 
the fluid which enters through the sidewall reaches a steady state right away with 

(5.32) 

where qF(7)) the location of the front of the incoming fluid, must satisfy 

(5.33) 

There are two situations which can occur. If V is negative throughout the region 
1 < 11 < T ~ ,  the front will reach 11 = 1 in the finite time 

(5.34) 

Since the cubic expression for - yV  has a minimum at 71 = 71Jd3, negative V will 
occur when ql < 33/24? if 9 < + 3? (which ensures that the minimum occurs for 71 > l) ,  
or when qI < (44)-’+ (1 + (44)-”4 if 9 > i34. In these cases the tangential velocity 
is a potential vortex and W ( c  = 0) is negative for T,J > y1/3; and positive for q < q1/3i 
(if this occurs for q > 1). 

The second situation occurs when the above inequalities are reversed and V changes 
sign in the region 1 < 71 < vl. This will always occur if vl is sufficiently large. Now 
V will tend to zero at some value 112 > 1. However, it will take an infinite time for 
the front to reach this value since the integral defining 7F will diverge. In  the region 
behind the front W ( c  = 0) is always negative, feeding fluid into the Ekman layer. 
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I 1 I 
I 
I 

q = o  

FIGURE 3. Sketch of the flow in a rotating cylinder with uniform outflow at the drain. Bottom 
friction is included and uniform inflow through a cylindrical boundary where constant tangential 
velocity is imposed. 

While the front is approaching its asymptotic value the flow ahead of the front is 
tending to its asymptotic state in which all the radial flow is in the Ekman layer (which 
therefore comes from behind the front). The resulting flow is sketched in figure 3. 
When ql + 00, T~ does also and the flow tends to the asymptotic state discussed 
previously with the Ekman-layer flow coming from infinity. 

While the outer part of the flow tends to a steady state, the part above the drain 
hole does not (without internal viscosity), as can be seen from (5.14). Numerical 
analysis of (5.15) is simplified because the integral depends only on 5 (for fixed q 5 )  
and will therefore give 

The asymptotes of this function are 

= Ez = F(q2e7, 4). (5.35) 

qU, = 1 +In (q2 e') +q5[ln (T,? e')I2+. .. , 
for small In (q2 e7). For In (qre e7) + 00, 

(5.36) 

(5.37) 

These limits are supplemented by some numerical work and presented in figures 4 
and 5 for q5 = 0.1. It is seen that as 7 + a0 the solution tends to a steady potential 
vortex except in a core which becomes ever thinner with time. This should be 
compared with the result for zero wall friction (q5 = 0) in which the circulation 
continues to increase with time. This limit is also indicated on figure 4. 

With the Einstein-Li boundary condition the flow above the drain hole is 
unchanged from the above if q1 > 33/2q5+ (or q1 > if $ > f3k 
However, if these inequalities are not satisfied it will be modified since the front of 
the incoming fluid will pass through 7 = 1 in the k i t e  time 7F. Therefore when 7 > 7F 
the solution will be 

qU, = qt for qr < 7 < 1, (5.38) 

and will be the same as in figure 5 for 7 < 7,547). Since the circulation in (5.38) is 
smaller than the asymptotic values given by (5.37), qF(7) occurs at the intersection 
of 7; with the time-dependent inner core. The nature of the solution is still a potential 
vortex outside of a shrinking core. 

+ (1 + 
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FIGURE 4. Circulation distribution in a rotating cylinder with uniform outflow at the drain. 
Bottom friction is included but there is no internal viscosity. 

1 2 7 3  

-;1/1_1___ 0 1 2 11 3 

FIGURE 5. Circulation distribution and radial velocity in a rotating cylinder with uniform outflow 
at the drain. There is bottom friction but not internal viscosity. This is plotted for 9 = 0.1 with 
T as a parameter. $ is defined in $5. Some of the circulation curves have been omitted for 7 > 1. 
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FIQURE 0. Critical radius of cylinder versus q5 for uniform outflow from rotating cylinder with 
uniform inflow from cylindrical boundary. Bottom friction and internal viscosity are both included. 
If the radius of the cylinder is greater than the critical value the circulation about the viscous core 
is determined by the bottom friction. If the radius is smaller than this value the circulation is the 
same as the value imposed a t  the outer radius of the cylinder. 

Ultimately, the interior viscosity will become important in these shrinking cores. 
Because the circulation is constant in all the cases above, the flows will tend to steady 
states which are Burgers’ vortex, as in (4.28), but with different values of the 
circulation. The solution is 

quo = r(i - B - v 2 / 4 ~ ) ,  (5.39) 

for N = vH/u ,  R2 4 1 and rgiven by (5.37) or by (5.38) depending on the parameters 
$ and ql. The results are: 

(5.40) 

(5.41) 

Essentially, this means that if ql is larger than a critical value which depends on $ 
the circulation is determined by boundary friction as if the outer wall were at infinity, 
while if q1 is smaller than this value it is determined by the imposed circulation at 
the outer boundary and is the same as if there were no wall friction. The critical value 
is plotted in figure 6. In the Einstein-Li experiments $ = 0(10-3) while q1 is only 
about 17, so the wall friction does not affect the circulation in this case. It should 
be possible to devise similar experiments in which the wall friction is the dominant 
effect. 

The limited free-surface analysis described at the end of $4 is also applicable here 
with K redefined by K = P I N G .  

(ii) $ > a 3 4  r=q;, ql < (4$)-1+(1+(4$)-2)+ 

r= [(4$)-i+(i+(4$)-2)t]2, q1 > (4$)-l+(1+(4$)-~):. 
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5.2. The effect of viscosity at both upper and lower boundaries 
The slow-efflux problem with uniform suction will be considered again with friction 
at the upper surface also included. In  this case there will be a steady-state solution, 
even without internal viscosity. In  the interest of brevity only the steady state will 
be discussed here. 

The boundary conditions are 

W ( ( = O ) = - l ,  ' I < 1 ;  I 

Therefore V is determined from 

V = W(6 = 0)- W ( [  = 1); 
i a  
7 a7 
- _  

and is found to be . 

(5.42) 

(5.43) 

(5.45) 

In order to have a steady-state solution either V = 0 or 'IU, is constant as discussed 
in the last section. 

For the region 7 > 1 the result for 7Ue is the same as in the last section but with 
4 in (5.25) and (5.26) replaced by 24. Thus, 

(5.46) 

If 4 > 334 only (5.47) occurs. 
The radial velocity is given by 

(5.48) 

(5.49) 

In the region where V = 0 the radial flux from infinity is carried equally in the two 
Ekman layers and W = 0 in this region. In  the inner region described by (5.46) (when 
it occurs) the vertical velocity varies linearly between 

(5.50) 

and W ( [  = 1) = W(5 = 0). (5.51) 

Thus part of the Ekman flux flows out of both Ekman layers before the vertical shear 
layer is reached. The part remaining in the lower layer enters the vertical shear layer. 
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FIGURE 7. Steady-circulation distribution and radial velocity in a rotating cylinder with uniform 
outflow at the drain. Bottom and top friction are included but no internal viscosity. This is plotted 
for 4 = 0.1. Compare with figure 5. 

1 

For q < 1, the V = 0 case from (5.44) gives 

= q2[(4q5)-l+ (1 + (4$)-2)4]a. (5.52) 

This is solid-body rotation. This must be joined to the region q > 1 by sections where 
V + 0 but q Uo = constant. Thus for q5 > 34 one finds 

(5.53) (84)-'+ (1 + (8q5)-2)4. ' < (4$)-l+ (1 + (4q5)-2)4' 
quo = q2 [(4#)-l+ (1 + (4q5)-')4I2, 

For q5 < +34 the solution is 

(5.56) 

This result if plotted in figure 7 for q5 = 0.1 together with V which is negative in the 
regions where VUo is constant and tends to zero at the edges of this region. (This figure 
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FIGURE 8. The effect of internal viscosity on the central core of the flows described in figure 7 
(g defined by (5.52), C by (5.59)) and in figure 10 (g defined by (6.18), C by (6.20)). 

should be compared with figure 5 where there is only bottom friction.) The flow spirals 
straight down from the upper Ekman layer to the drain hole in the inner region where 
V = 0, while there is a radially inward component in the remaining part with some 
of the flow being out of the upper Ekman layer and some out of the vertical shear 
layer. 

Internal viscosity becomee important in the central region when the width of the 
region, which is of order $4 for small q5, becomes comparable to the viscous length 
Ni. The problem is to solve (4.1) for the steady state, when V is given by (5.44). One 
can make use of the fact that q5 must be small (since N is small) by noting that TU, 
must match into 3t/Sq5 when 9 is large compared to 4;. This suggests a change of 
variables to 

(5.57) 

In these variables 

(5.58) 
3: v = --@s+- q5tgi+O(q5tN). 
22 
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Therefore as #-to, with $IN = O ( l ) ,  g must satisfy 

I (5.59) 

This is to be solved with boundary conditions g = 0 at 8 = 0 and g + 1 as s + 00. The 
parameter C defined above is independent of the drain velocity since 

(5.60) 

and is likely to be of order one on laboratory experiments with water. Equation (5.59) 
has been solved numerically for several values of C .  The results are presented in 
figure 8. When C is small the solution approaches Burgers’ vortex. 

6. Turner’s problem: application to the HBG experiment 
Turner (1966) considered a laboratory model for a tornado which is similar to the 

drain problems. In the present geometry this may be described as a flow generated 
in a rotating cylinder by an imposed vertical velocity profile at the bottom consisting 
of a central suction surrounded by an annular blowing region with the same volume 
flow rate so there is no net fluid withdrawn from the vessel. Viscous effects are allowed 
at the upper boundary and in the interior but not at the lower boundary. In  a tornado 
the prescribed velocity profile is in the clouds while the ‘upper’ boundary is the 
ground. The problem described seems to model the HBG vortices. The imposed 
velocity profile is embedded in the layer of turbulence produced by the oscillating 
grid and is not known in detail. The analogy of these vortices with tornados was 
pointed out by Hopfinger & Browand (1982). 

The vertical profile will be taken as 

I w(y=o)=-+(2-T#q(1-7/), 7 /<2;  

= o ,  7/>2.  

This is similar to the profiles assumed by Turner but somewhat simpler. Much of what 
is discussed here can be generalized to profiles which have the same general 
characteristics as (6.1). Some of the parameters used previously have to be redefined ; 
R is now the radius where W(g = 0) changes sign; u, is the magnitude of the velocity 

For the purposes of flow visualization HBG operate their device without the upper 
plate. Therefore, it  is appropriate to consider first the problem without friction at 
the upper boundary. Initially the transient case will be treated without internal 
viscosity. 

The problem is the same as in $3  with W varying linearly between zero at the top 
surface and the value given by (6.1) at the bottom. The radial velocity is therefore 
given by 

at7/=0. 

- 

1 v = --&(2-7/)2, 7/ < 2; 

= o ,  7 > 2 .  
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FIQURE 9. Circulation distribution in Turner’s problem ($6) without friction at the upper surface; 
(a) without internal viscosity, with 7 as a parameter; ( b )  steady-state solution with internal 
Viscosity, N = 0.025. Inner core is the same as Burgers’ vortex. 

The integrations indicated in (3.21) can be carried out to obtain 

g 2 =  7 2 ,  7 > 2 ;  (6.4) 

where, as before, f 2  = quo. The flow is solid-body rotation for 7 > 2 since there is 
no radial velocity to disturb it. When 7 < 2 i t  is not possible to solve explicitly for 
f but this is easily done numerically with the result shown in figure 9(a) .  The 
asymptotes are clearly seen from (6.3). As 7+ 00 with fixed (but not equal to zero) 
the only other term which can balance 7 is the last one in (6.3). Therefore f+2. A 
few terms in an expansion gives 

For small 7 and f several other terms balance, giving 

VUo = f 2  = T2eT, v2er < 1. (6.6) 

This flow does not settle down to a steady state as r+ 00 ; the central core continues 
to shrink. However, unlike the flow in 53 the circulation about the core region tends 
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to a finite value as 7 + 00. Physically, this is because parcels of rotating fluid do not 
move very far radially in this problem. The flow more closely resembles that of $5.2 
where the upflow was confined to a vertical shear layer. 

The effect of internal viscosity is easy to include. The flow tends to Burgers' vortex 
as T+ a~ with 

= 4(1-ee-q'/4N), 7 < 2; (6.7) 

q u g = q 2 ,  7 > 2 ;  (6.8) 

where N = v H / U ,  R2 is small. This result is independent of the details of the 
specifying vertical profile; the flow is Burgers' vortex with circulation the same as 
in the solid-body rotation at the edge of the structure (which is at r] = 2 in the above 
solution). This is plotted in figure 9(b) for N = 0.025. From this figure it is clear that 
viscosity is also important near the corner in the profile at r] = 2. This is a 
discontinuity in vorticity which will be smoothed out by viscosity but not in a steady 
manner. An unsteady viscous layer will develop in which the irrotational inner region 
encroaches into the constant-vorticity outer region. As this proceeds the circulation 
about the inner vortex core will slowly increase with time. This unsteady layer is not 
required if there is any friction at the upper surface, as can be seen from the analysis 
below. 

By observing the depth and shape of the dimple which vortices induce in the free 
surface HBG have estimated the maximum vorticity in the vortex. For one set of 
observations they find w,, = 8052. From (6.8) the vorticity is 

This gives w,, = 2Q/N from which an estimate of N can be obtained; N = 0.025. 
From the definition of N one can estimate u, , the maximum suction velocity. Taking 
v = 0.01, H = 30 cm and R = 1 cm (the outer edge of the vortex is at a radius of about 
2 cm) gives u, x 12 cm/s which can be compared to  the maximum velocity of the 
oscillating grid of about 100 cm/s. 

The effect of surface friction at the upper boundary will now be considered. Interior 
viscosity will be neglected initially and attention will be directed to the steady-state 
solution which exists for this case. The method to be used is the same as in $5.2. 

The boundary velocities are 

(6.10) 

and W ( y  = 0) is given by (6.1). Since W varies linearly between these values, V is 
determined from 

i a  
- - 'Iv = W(y = 0)- W ( [  = l),  
'I a7 

and is found to be 

(6.1 1) 

(6.12) 
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For a steady-state solution either V is zero or r U ,  is constant. For the part of the 
solution where V is zero, (6.11) and (6.12) give 

(6.13) 

quo= 72,  'I > 2. (6.14) 

This function is either monotonically increasing (Turner restricted it to this case) or 
contains a maximum and a minimum value for r ]  < 2. In the latter case the complete 
solution must have a region of constant rjU, inserted from the minimum in such a 
way as to truncate the maximum as in $5.2. A little analysis shows that the relative 
maxima are at the roots of 

-(2-'1)'(2-37) (2+9) = (16$)2. 
There are two roots if 

(6.15) 

(6.16) 

and none otherwise. The resulting velocity is plotted for several values of @ in 
figure 10. As $ + O  the position of the minimum approaches T,I = 2 and when both 'I 
and 4 are small (6.14) gives a region of solid-body rotation. The solution thus 
becomes (as q5+0); 

rlue 112/442, 7 < 44;) 

1 quo = 4, 44 < ?j < 2; 

q U * = ? f ,  71 > 4 .  

(6.17) 

The radial velocity is determined from (6.1 1 )  and is non-zero in the annular regions 
where 717, is constant. This is also plotted in figure 10. 

The vertical component of velocity is equal to W ( c  = 0) in the regions where V = 0; 
the flow spirals straight up in an outer annular region into the Ekman layer and 
straight down out of the Ekman layer in an inner core. If q5 > 0.114 the whole flow 
consists of only these two regions. If q5 < 0.114 there is an intermediate annular region 
with V < 0, where some of the upflow turns back before reaching the top. If g5 is very 
small this region dominates and in the limit all of the upflow turns back before 
reaching the upper boundary; W ( [  = 1)  = 0. This limit is quite non-uniform. For 
small but finite 4, W ( c  = 1) is of order 4 over most of the region but is near 1 in a 
thin central jet with width of order 4 which erupts out of the Ekman layer. The jet 
region coincides with the central region of solid-body rotation. 

The effect of interior viscosity can now be assessed. Since N is assumed to be small 
it is clear that viscosity is unimportant unless 4 is small. Referring to the limiting 
solution given by (6.17) it  is seen that the radius of the inner core is of order 4. 
Therefore viscosity will become important when Ni = O(#) ,  differing from the 
results of $5.2. The appropriate scaling of (4.1) is now 

rl 
N" 

s = -  

and from (6.11) 

As $ + O ,  g must satisfy 
V = -iNis+2$gi+O(N). 

(6.18) 

(6.19) 

(++Cgi)-=--- - 
ds ds2 s ds 

C = 24/N;. I 
(6.20) 
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This is to be solved with boundary conditions g = 0 at 8 = 0 and g + 1 as s + co . This 
is exactly the same problem as described by (5.59) except that g is scaled differently 
and C has a different definition. (Note that with this definition C is independent of 
the viscosity.) Figure 8 is still appropriate. As C-tO the solution tends to Burgers' 
vortex. 

The parameters in the HBG experiment when the upper cover is in place may be 
estimated. Assuming that the estimate u, = 12 cm/s is still valid, and using 
H = 52 cm, R = 1 cm, v = 0.01 cm2/s: 

(6.21) 

VH 
N = -  = 0.043 ; 

u, R2 
0.67 (va)! 

u, 
= 0.014; 9 =  

29 C = - - 0.14. NI - 
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Since C is so small, friction at the upper boundary is not very important in this 
flow. 

Turner’s analysis of this problem differs from that presented above. While he 
correctly assessed the physics of the problem and introduced the use of the nonlinear 
Ekman suction condition, he made an unnecessary assumption about the nature of 
the vertical velocity at  the edge of the Ekman layer. He assumed that 
W(g = 1) = tW(5  = 0) which is not true. His results for 7U0 seem to be insensitive 
to this assumption for certain ranges of the parameters. 

7. Discussion and conclusion 
The problems discussed in this paper all require that the Rossby number be small 

in order for quasi-two-dimensional flow structures to exist. One might enquire how 
small this parameter must be. Inspection of (1 -9) suggests the condition S ~ ( H / R ) ~  4 1, 
which is rather stringent because H/R is often large in experiments. From the 
definition of E this means 

& 4  1. 

This appears to be correct when uo is of order RQ (by which it is scaled). However, 
this parameter is not small in either the Einstein-Li or the HBG experiments, but 
these flows are clearly quasi-two-dimensional. It seems that, in flows where Ue becomes 
locally large, ue should be scaled with RSa,,, (where Sam,, is the maximum angular 
velocity on the axis) in order to assess the relative sizes of terms. This gives the 
condition 

For the HBG experiment the estimates 

u, = 12 cm/s, R = 1 cm, 

from $6 give .. 

< 1. (7.2) 

Q,,, = 40 x 27t rad/s 

wm x 0.05. 

In the Einstein-Li experiment estimates of the parameters have been made from their 
data. For the case with smaller flow rate (u, = 22 cm/s, R = 0.6 cm, 51,,, = 150051, 
$2 = 0.8 rad/s) 

RQmax 

urn - - 0.03, 
RQmax 

while for the case with high flow rate (u, = 66 cm/s, R = 0.6 cm, 51,,, % 75051, 
51 = 0.5 rad/s) 

urn - - 0.3. 
R*max 

Therefore these flows satisfy the modified condition expressed by (7.2). 
It is believed that this study gives some insight into a class of nonlinear rotating 

flows which have a structure similar t o  those of well-understood linear problems in 
which an inviscid interior flow is controlled by Ekman boundary layers. These 
rotating drain problems have very nonlinear interior flows despite the limitation of 
small Rossby number (as measured by u,/R51,,,). Some simple experiments are 
planned to verify the structure of these flows. 
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Appendix A. Solution of the linearized problem 
The problem posed in $2 is to solve 

with boundary and initial conditions 

1 Uzo= 0 a t  f =  1, 

uzo = w ~ ( 7 )  F(T/T!) at  f = 0, 

Uzo = 0 at T = 0. 

The solution may be found in the form of a Bessel integral, 

UZO(7, 5, T )  = J W  UP, 6, T) Jo(A7) A a, 
0 

in which U is the solution of 

where 

U = O  a t f = l ,  

u = uB(A) F(T/T,’) at  = 0, 

U = O  a t T = 0 ,  

The non-homogeneous term may be shifted to the partial differential equation by the 
change of variable 

for then D must satisfy 

U =  UBP(T/Ts) (l-f)+ 8, (A 6) 

where = HAIR and 

8 = 0  a t f ; = l ,  8 = 0  atf==O, b=O a t T = O .  

The sine-series expansion 
00 

8= Z n,(T)sinnz(l-C), 

1- f=  X a ,  sinnn(1-f), 

n-1 

co 

n-1 

reduces the problem to an ordinary differential equation, 
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which may be solved by variation of parameters. The solution is 

d2F d!P 1 dT2 d2F 1 T 
d , = [ - h j  sinw,T-dT cosw,T+ coso,T-dT sinw,T, 

w n  o 

where 

Using (A 3) the solution may be written as 

uz0 = joQ) uBJ,(hr)hdA(l-Y)F(T/T,)+ jm on(h,T)Jo(hr])hdAsinqlc( l -~) .  
n-1 o 

Because of (A 5 )  and the Hankel inversion formula this may be written 

Q) rQ) 

Appendix B. Effect of viscosity on accelerating swirl 
The problem formulated in $4 is to solve 

with the asymptotic boundary condition 

and w, bounded at s = 0. It is assumed that initial conditions have decayed out and 
only a quasi-steady solution is sought. (The rate at which initial conditions damp out 
will be discussed later in this section.) One can readily see that there is no steady 
solution which satisfies the condition given by (4.7). In  fact, it is clear that the 
circulation at  large s increases with time. This can be seen from the inviscid solution 
or by the following reasoning. Define 

A(s, 7) = Jos N 2 s ds. 

Operating on (B 1) gives 

Using (B 2) shows -+ 1 as s+oo, (B 5 )  

and therefore A+r+some function of s as s+m.  (B 6) 

aA 
a7 

The above considerations suggest that a solution be sought in the form 

(B 7) wz - N - - rG,(s) + G2(s) ,  R 
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whence G, and G, must satisfy 

G - 1 - I S a .  The solutions are : , - 2 e 4  9 

The multiplicative constant in G, was chosen to satisfy (4.11) and G, automatically 
satisfies (4.7). The constant C,  is a shift in the origin of 7 and can be determined by 
matching qU8 calculated from 

with the inviscid solution given by (3.23). Substituting (B 7), (B 10) and (B 11) into 
(B 12) the asymptotic behaviour may be determined to be: 

VUg = In (s2)+[s+2C2-; JOm In (z)e-:2dz]--+exponentially 4 small terms, 
€42 

(B 13) 
for large s. This must match with 

quo = l+7+ln(N)+ln(s2),  
whence it is found that 

= iln(N)+0.9045. 
The solution is thus 

While (B 16) gives an exact solution of the partial differential equation, it does not 
satisfy the exact initial conditions. It would be of value to know how fast the influence 
of the initial conditions decays away. 

Suppose that a solution of the exact initial-value problem is known and suppose 
a neighbouring solution is also known with different initial conditions but with the 
same total amount of vorticity. This second solution can be regarded as the solution 
derived above. If Q is the difference of these two solutions then it has the property 
that j:Gsds = 0. An estimate of the rate of decay of G is needed. A change of 
variables, 

s1 =efts ,  Q, = e-f'G, 71 = eT-l, (B 17) 

reduces (B 1) to the two-dimensional heat equation, 
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The solution of this may be found as an integral of the fundamental singular solution 
of the heat equation times the initial G. Upon expressing the result in terms of the 
original variables given in (B 17) and expanding for large 7 one finds 

G+e-T as 7+ 00. (B 19) 

Therefore if 7 = O(1nN-l) one would find G = O ( N ) ,  which is small. The conclusion 
to be drawn is that the effect of the initial condition decays quite rapidly, becoming 
small at even moderate values of 7.  

This work was supported by the National Science Foundation under Grant No. 
MEA-8210341. 
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